Please provide the following information, and submit to the NOAA DM Plan Repository.

Reference to Master DM Plan (if applicable)

As stated in Section IV, Requirement 1.3, DM Plans may be hierarchical. If this DM Plan inherits provisions from a higher-level DM Plan already submitted to the Repository, then this more-specific Plan only needs to provide information that differs from what was provided in the Master DM Plan.

URL of higher-level DM Plan (if any) as submitted to DM Plan Repository:

1. General Description of Data to be Managed

1.1. Name of the Data, data collection Project, or data-producing Program:

2023 USGS Lidar: San Francisco, CA

1.2. Summary description of the data:

Original Product: These lidar data are processed Classified LAS 1.4 files, formatted to 654 individual 1000 m x 1000 m tiles; used to create intensity images, 3D breaklines, and hydro-flattened DEMs as necessary.

Original Dataset Geographic Extent: 4 counties (Alameda, Marin, San Francisco, San Mateo) in California, covering approximately 53 total square miles.

Original Dataset Description: The CA_SanFrancisco_B23, Work Unit 300449 project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.15 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, 2023 Rev. A. The data were developed based on a horizontal projection/datum of NAD 1983 2011 San Francisco CS13 Meters, Meter and vertical datum of NAVD88 Geoid18, Meter. LiDAR data were delivered as processed Classified LAS 1.4 files formatted to 654 individual 1000 m x 1000 m tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1000 m x 1000 m schema. Continuous breaklines were produced in Esri file geodatabase format.

Original Data Collection Ground Conditions: LiDAR was collected in spring 2023, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications and meet ASPRS vertical accuracy guidelines, NV5 Geospatial utilized a total of 13 ground control points that were used to calibrate the LiDAR to known ground locations established throughout the project area. An additional 41 independent accuracy checkpoints, 30 in Bare Earth and Urban landcovers (30 NVA points), 11 in Tall Weeds categories (11 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.

This metadata record supports the data entry in the NOAA Digital Coast Data Access Viewer (DAV). For this data set, the DAV is leveraging the Entwine Point Tiles (EPT)

hosted by USGS on Amazon Web Services.

1.3. Is this a one-time data collection, or an ongoing series of measurements?

One-time data collection

1.4. Actual or planned temporal coverage of the data:

2023-04-20

1.5. Actual or planned geographic coverage of the data:

W: -122.516107825, E: -122.326425283, N: 37.8373975022, S: 37.6969866729

1.6. Type(s) of data:

(e.g., digital numeric data, imagery, photographs, video, audio, database, tabular data, etc.) Model (digital)

1.7. Data collection method(s):

(e.g., satellite, airplane, unmanned aerial system, radar, weather station, moored buoy, research vessel, autonomous underwater vehicle, animal tagging, manual surveys, enforcement activities, numerical model, etc.)

1.8. If data are from a NOAA Observing System of Record, indicate name of system:

1.8.1. If data are from another observing system, please specify:

2. Point of Contact for this Data Management Plan (author or maintainer)

2.1. Name:

NOAA Office for Coastal Management (NOAA/OCM)

2.2. Title:

Metadata Contact

2.3. Affiliation or facility:

NOAA Office for Coastal Management (NOAA/OCM)

2.4. E-mail address:

coastal.info@noaa.gov

2.5. Phone number:

(843) 740-1202

3. Responsible Party for Data Management

Program Managers, or their designee, shall be responsible for assuring the proper management of the data produced by their Program. Please indicate the responsible party below.

3.1. Name:

3.2. Title:

Data Steward

4. Resources

Programs must identify resources within their own budget for managing the data they produce.

4.1. Have resources for management of these data been identified?

Yes

4.2. Approximate percentage of the budget for these data devoted to data management (specify percentage or "unknown"):

Unknown

5. Data Lineage and Quality

NOAA has issued Information Quality Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity of information which it disseminates.

5.1. Processing workflow of the data from collection or acquisition to making it publicly accessible

(describe or provide URL of description):

Lineage Statement:

The NOAA Office for Coastal Management (OCM) ingested references to the USGS Entwine Point Tiles (EPT) hosted on Amazon Web Services (AWS) into the Digital Coast Data Access Viewer (DAV). The DAV accesses the point cloud as it resides on AWS under the usgs-lidar-public-container.

Process Steps:

- 2024-01-01 00:00:00 - Raw Data and Boresight Processing: The boresight for each lift was done individually as the solution may change slightly from lift to lift. The following steps describe the Raw Data Processing and Boresight process: 1) Technicians processed the raw data to LAS format flight lines using the final GPS/ IMU solution. This LAS data set was used as source data for boresight. 2) Technicians first used NV5 Geospatial proprietary and commercial software to calculate initial boresight adjustment angles based on sample areas selected in the lift. These areas cover calibration flight lines collected in the lift, cross tie, and production flight lines. These areas are well distributed in the lift coverage and cover multiple terrain types that are necessary for boresight angle calculation. The technicians then analyzed the results and made any necessary additional adjustment until it was acceptable for the selected areas. 3) Once the boresight angle calculation was completed for the selected areas, the adjusted settings were applied to all of the flight lines of the lift and checked for consistency. The technicians utilized commercial and proprietary software packages to analyze how well flight line overlaps matched for the entire lift and adjusted as necessary until the results met the project specifications. 4) Once all lifts were completed with individual boresight adjustment, the technicians checked and corrected the vertical misalignment of all flight lines and also the matching between data and ground

truth. The relative accuracy was less than or equal to 7 cm RMSEz within individual swaths and less than or equal to 10 cm RMSEz or within swath overlap (between adjacent swaths). 5) The technicians ran a final vertical accuracy check of the boresighted flight lines against the surveyed checkpoints after the z correction to ensure the requirement of NVA = 19.6 cm 95% Confidence Level (Required Accuracy) was met.

- 2024-01-01 00:00:00 LAS Point Classification: The point classification is performed as described below. The bare earth surface is then manually reviewed to ensure correct classification on the Class 2 (Ground) points. After the bare-earth surface is finalized, it is then used to generate all hydro-breaklines through heads-up digitization. All ground (ASPRS Class 2) lidar data inside of the Lake Pond and Double Line Drain hydro flattening breaklines were then classified to water (ASPRS Class 9) using TerraScan macro functionality. A buffer of 0.5 feet was also used around each hydro-flattened feature to classify these ground (ASPRS Class 2) points to Ignored ground (ASPRS Class 10). All Lake Pond Island and Double Line Drain Island features were checked to ensure that the ground (ASPRS Class 2) points were reclassified to the correct classification after the automated classification was completed. All overlap data was processed through automated functionality provided by TerraScan to classify the overlapping flight line data to approved classes by USGS. The overlap data was classified using standard LAS overlap bit. These classes were created through automated processes only and were not verified for classification accuracy. Due to software limitations within TerraScan, these classes were used to trip the withheld bit within various software packages. These processes were reviewed and accepted by USGS through numerous conference calls and pilot study areas. All data was manually reviewed and any remaining artifacts removed using functionality provided by TerraScan and TerraModeler. Global Mapper us used as a final check of the bare earth dataset. GeoCue was then used to create the deliverable industry-standard LAS files for both the All Point Cloud Data and the Bare Earth. Proprietary software was used to perform final statistical analysis of the classes in the LAS files, on a per tile level to verify final classification metrics and full LAS header information.
- 2024-01-01 00:00:00 Maximum Surface Height Rasters were produced as ancillary data from the classified lidar point cloud in order to evaluate the withheld bit flag proof of performance for points that cannot be reasonably interpreted as valid surface returns. These were produced using all returns, withheld flagged points excluded, and using the highest elevation point value from each pixel. These rasters are 32-bit, floating point format and delivered as GeoTIFF files per tile. MSHR are generated from the point cloud data and will not be altered after creation nor will there be further maintenance on this product.
- 2024-01-01 00:00:00 Swath Separation Imagery was produced for the entire project area. Swath separation images use color-coding to illustrate differences in elevation (z-) values where swaths overlap. The color-coded images are semi-transparent and overlay the lidar intensity image. They are ancillary data used as visual aids to more easily identify regions within point cloud datasets that may

have suspect interswath alignment or other geometric issues. Imagery was created using last returns with all classification and bit flags, except for noise and withheld bit flag are included. SSI are generated from the point cloud data and will not be altered after creation nor will there be further maintenance on this product.

- Original point clouds in LAS/LAZ format were restructured as Entwine Point Tiles and stored on Amazon Web Services. The data were re-projected horizontally to WGS84 web mercator (EPSG 3857) and and the vertical units of meters (NAVD88 GEOID18) were retained.
- 2024-09-05 00:00:00 The NOAA Office for Coastal Management (OCM) created references to the Entwine Point Tile (EPT) that was ingested into the NOAA Digital Coast Data Access Viewer (DAV). No changes were made to the data. The DAV will access the point cloud as it resides on Amazon Web Services (AWS) under the usgslidar-public container. This is the AWS URL being accessed: https://s3-us-west-2.amazonaws.com/usgs-lidar-public/CA_SanFrancisco_1_B23/ept.json
- 5.1.1. If data at different stages of the workflow, or products derived from these data, are subject to a separate data management plan, provide reference to other plan:
- 5.2. Quality control procedures employed (describe or provide URL of description):

6. Data Documentation

The EDMC Data Documentation Procedural Directive requires that NOAA data be well documented, specifies the use of ISO 19115 and related standards for documentation of new data, and provides links to resources and tools for metadata creation and validation.

6.1. Does metadata comply with EDMC Data Documentation directive?

No

6.1.1. If metadata are non-existent or non-compliant, please explain:

Missing/invalid information:

- 1.7. Data collection method(s)
- 3.1. Responsible Party for Data Management
- 5.2. Quality control procedures employed
- 7.1.1. If data are not available or has limitations, has a Waiver been filed?
- 7.4. Approximate delay between data collection and dissemination
- 8.3. Approximate delay between data collection and submission to an archive facility

6.2. Name of organization or facility providing metadata hosting:

NMFS Office of Science and Technology

6.2.1. If service is needed for metadata hosting, please indicate:

6.3. URL of metadata folder or data catalog, if known:

https://www.fisheries.noaa.gov/inport/item/73386

6.4. Process for producing and maintaining metadata

(describe or provide URL of description):

Metadata produced and maintained in accordance with the NOAA Data Documentation Procedural Directive: https://nosc.noaa.gov/EDMC/DAARWG/docs/EDMC_PD-Data_Documentation_v1.pdf

7. Data Access

NAO 212-15 states that access to environmental data may only be restricted when distribution is explicitly limited by law, regulation, policy (such as those applicable to personally identifiable information or protected critical infrastructure information or proprietary trade information) or by security requirements. The EDMC Data Access Procedural Directive contains specific guidance, recommends the use of open-standard, interoperable, non-proprietary web services, provides information about resources and tools to enable data access, and includes a Waiver to be submitted to justify any approach other than full, unrestricted public access.

7.1. Do these data comply with the Data Access directive?

Yes

7.1.1. If the data are not to be made available to the public at all, or with limitations, has a Waiver (Appendix A of Data Access directive) been filed?

7.1.2. If there are limitations to public data access, describe how data are protected from unauthorized access or disclosure:

7.2. Name of organization of facility providing data access:

NOAA Office for Coastal Management (NOAA/OCM)

7.2.1. If data hosting service is needed, please indicate:

7.2.2. URL of data access service, if known:

https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=10172/details/10172 https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/LPC/Projects/CA_SanFrancisco_B23/CA_SanFrancis

7.3. Data access methods or services offered:

Data is available online for bulk and custom downloads.

7.4. Approximate delay between data collection and dissemination:

7.4.1. If delay is longer than latency of automated processing, indicate under what authority data access is delayed:

8. Data Preservation and Protection

The NOAA Procedure for Scientific Records Appraisal and Archive Approval describes how to identify, appraise and decide what scientific records are to be preserved in a NOAA archive.

8.1. Actual or planned long-term data archive location:

(Specify NCEI-MD, NCEI-CO, NCEI-NC, NCEI-MS, World Data Center (WDC) facility, Other, To Be Determined, Unable to Archive, or No Archiving Intended) NCEI_NC

- 8.1.1. If World Data Center or Other, specify:
- 8.1.2. If To Be Determined, Unable to Archive or No Archiving Intended, explain:
- **8.2.** Data storage facility prior to being sent to an archive facility (if any): Office for Coastal Management Charleston, SC
- 8.3. Approximate delay between data collection and submission to an archive facility:
- 8.4. How will the data be protected from accidental or malicious modification or deletion prior to receipt by the archive?

Discuss data back-up, disaster recovery/contingency planning, and off-site data storage relevant to the data collection

Data is backed up to cloud storage.

9. Additional Line Office or Staff Office Questions

Line and Staff Offices may extend this template by inserting additional questions in this section.