SHORT-FINNED PILOT WHALE (Globicephala macrorhynchus): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

There are two species of pilot whales in the western North Atlantic - the longfinned pilot whale, Globicephala melas melas, and the short-finned pilot whale, G. macrorhynchus. These species can be difficult to differentiate at sea and cannot be reliably visually identified during either abundance surveys or observations of fishery mortality without high-quality photographs (Rone and Pace 2012). Pilot whales (Globicephala sp.) in the western North Atlantic occur primarily along the continental shelf break from Florida to the Nova Scotia Shelf (Mullin and Fulling 2003). Long-finned and short-finned pilot whales overlap spatially along the mid-Atlantic shelf break between Delaware and the southern flank of Georges Bank (Payne and Heinemann 1993; Rone and Pace 2012). Long-finned pilot whales have occasionally been observed stranded as far south as Florida, and short-finned pilot whales have occasionally been observed stranded as far north as Massachusetts (Pugliares et al. 2016). The exact latitudinal ranges of the two species remain uncertain. However, south of Cape Hatteras most pilot whale sightings are expected to be short-finned pilot whales, while north of approximately 42°N most pilot whale sightings are expected to be long-finned pilot whales (Figure 1; Garrison and Rosel 2017). Short-finned pilot whales are also documented in the wider Caribbean (Bernard and Riley 1999)

and along the continental shelf and continental slope in the northern Gulf of Mexico (Mullin and Fulling 2004; Maze-Foley and Mullin 2006). Because there are confirmed sightings within waters of the Bahamas, this is likely a transboundary stock (e.g., Halpin et al. 2009; Dunn 2013).

Thorne et al. (2017) tracked 33 short-

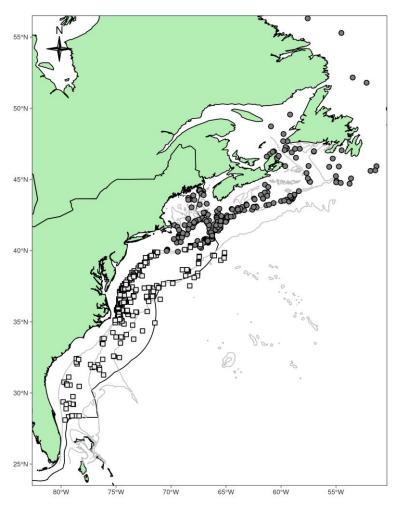


Figure 1. Distribution of long-finned (filled circles) and shortfinned (open squares) pilot whale sightings from NEFSC and SEFSC shipboard and aerial surveys during 1995, 1998, 1999, 2002, 2004, 2006, 2007, 2008, 2010, 2011, 2016, and 2021, and DFO's 2007 TNASS and 2016 NAISS surveys. The inferred distribution of the two species is valid for June-August only. Isobaths are the 200-m, 1000-m and 4000-m depth contours.

finned pilot whales off Cape Hatteras in 2014 and 2015 using satellite-linked telemetry tags. Kernel density estimates

of habitat use by whales during tracking were concentrated along the continental shelf break from Cape Hatteras north to Hudson Canyon, but whale distribution also included shelf break waters south of Cape Lookout, shelf break waters off Nantucket Shoals, and deeper offshore waters of the Gulf Stream east and north of Cape Hatteras, reinforcing that the continental shelf break is an important foraging habitat for short-finned pilot whales in the western North Atlantic. Finally, short-finned pilot whales that have stranded alive along the U.S. Atlantic coast and subsequently were released and tracked via visual tags or satellite-linked telemetry have traveled hundreds of kilometers from their release sites to other areas of the U.S. Atlantic and to the Caribbean (e.g., Irvine et al. 1979; Wells et al. 2013). Whether these movements are representative of normal species' patterns is unknown because they were generated from stranded animals.

An analysis of stock structure within the western North Atlantic Stock has not been completed so there are insufficient data to determine whether there are multiple demographically-independent populations within this stock. Studies to evaluate genetic population structure in short-finned pilot whales throughout the region will improve understanding of stock structure. Pending these results, the *Globicephala macrorhynchus* population occupying U.S. Atlantic waters is managed separately from both the northern Gulf of Mexico stock and the Puerto Rico and U.S. Virgin Islands stock.

POPULATION SIZE

The best available estimate for short-finned pilot whales in the western North Atlantic is 18,749 (CV=0.33; Table 1; Garrison and Dias 2023; Palka 2023). This estimate is from summer 2021 shipboard surveys covering waters from central Florida to the lower Bay of Fundy and is considered the best available abundance estimate because it is based on the most recent surveys covering the full range of short-finned pilot whales in U.S. Atlantic waters. Because long-finned and short-finned pilot whales are difficult to distinguish at sea, sightings data were reported as *Globicephala* sp. Pilot whale sightings from these surveys were strongly concentrated along the continental shelf break; however, pilot whales were also observed over the continental slope in waters associated with the Gulf Stream (Figure 1). These survey data have been combined with an analysis of the spatial distribution of the two pilot whale species based on genetic analyses of biopsy samples to derive separate abundance estimates for each species (Garrison and Rosel 2017).

Earlier Abundance Estimates

Please see Appendix IV for a summary of abundance estimates including earlier estimates and survey descriptions.

Recent Surveys and Abundance Estimates for Globicephala spp.

Abundance estimates of 3,810 (CV=0.42) and 25,114 (CV=0.27) Globicephala sp. were generated from vessel surveys conducted in the northeast and southeast U.S., respectively, during the summer of 2016. The northeast survey was conducted during 27 June - 25 August and consisted of 5.354 km of on-effort trackline. The majority of the survey was conducted in waters north of 38°N latitude and included trackline along the shelf break and offshore to the U.S. EEZ. Pilot whale sightings were concentrated along the shelf-break between the 1,000-m and 2,000-m isobaths and along Georges Bank (NEFSC and SEFSC 2016). The southeast vessel survey covered waters from Central Florida to approximately 38°N latitude between the 100-m isobaths and the U.S. EEZ during 30 June - 19 August. A total of 4,399 km of trackline was covered on effort. Pilot whales were observed in high densities along the shelf-break between Cape Hatteras and New Jersey and also in waters further offshore in the mid-Atlantic and off the coast of Florida (NEFSC and SEFSC 2016; Garrison and Palka 2018). Both the northeast and southeast surveys utilized two visual teams and an independent observer approach to estimate detection probability on the trackline (Laake and Borchers 2004). Mark-recapture distance sampling was used to estimate abundance. A logistic regression model (see next section) was used to estimate the abundance of short-finned pilot whales from these surveys. For the northeast survey, this resulted in an abundance estimate of 3,810 (CV=0.42) short-finned pilot whales. In the southeast, the model indicated that this survey included habitats expected to exclusively contain short-finned pilot whales resulting in an abundance estimate of 25,114 (CV=0.27).

More recent abundance estimates of 3,745 (CV=0.67) and 15,004 (CV=0.38) Globicephala sp. were generated from vessel surveys conducted in U.S. waters of the western North Atlantic during the summer of 2021 (Table 1; Garrison and Dias 2023; Palka 2023). One survey was conducted from 16 June to 23 August in waters north of 36°N latitude and consisted of 5,871 km of on-effort trackline along the shelf break and offshore to the outer edge of the U.S. EEZ (NEFSC and SEFSC 2022). The second vessel survey covered waters from central Florida (25°N latitude) to approximately 38°N latitude between the 200-m isobaths and the outer edge of the U.S. EEZ during 12 June–31 August. A total of 5,659 km of trackline was covered on effort (NEFSC and SEFSC 2022). Both surveys utilized two

visual teams and an independent observer approach to estimate detection probability on the trackline (Laake and Borchers 2004). Mark-recapture distance sampling was used to estimate abundance. Estimates from the two surveys were combined and CVs pooled to produce a species abundance estimate for the stock area.

Spatial Distribution and Abundance Estimates for Globicephala macrorhynchus

Pilot whale biopsy samples were collected during summer months (June-August) from South Carolina to the southern flank of Georges Bank in 1998, 2001, 2004, 2005, 2006, and 2007. These samples were identified to species using phylogenetic analysis of mitochondrial DNA sequences. Samples from stranded specimens that were morphologically identified to species were used to assign clades in the phylogeny to species and thereby identify all survey samples. The probability of a sample being from a short-finned (or long-finned) pilot whale was evaluated as a function of sea surface temperature, latitude, and month using a logistic regression. This analysis indicated that the probability of a sample coming from a short-finned pilot whale was near zero at water temperatures $<22^{\circ}$ C, and near one at temperatures >25°C. The probability of being a short-finned pilot whale also decreased with increasing latitude. Spatially, during summer months, this regression model predicted that all pilot whales observed in offshore waters near the Gulf Stream are most likely short-finned pilot whales. The area of overlap between the two species occurs primarily along the shelf break between 38°N and 40°N latitude (Garrison and Rosel 2017). This model was used to partition the abundance estimates from surveys conducted during the summer of 2021 based upon contemporaneous satellite-derived sea surface temperature. The sightings from the shipboard surveys covering waters from Florida to New Jersey were predicted to consist entirely of short-finned pilot whales. The vessel portion of the northeast surveys from New Jersey to the southern flank of Georges Bank included waters along the shelf break and waters further offshore extending to the U.S. EEZ. Pilot whales were observed in both areas during the survey. Along the shelf break, the model predicted a mixture of both species, but the sightings in offshore waters near the Gulf Stream were again predicted to consist predominantly of short-finned pilot whales (Garrison and Rosel 2017). The best abundance estimate for short-finned pilot whales is thus the sum of the southeast survey estimate (15,004; CV=0.38) and the estimated number of short-finned pilot whales from the northeast vessel survey (3,722; CV=0.68). The best available abundance estimate is thus 18,726 (CV=0.33).

Table 1. Summary of recent abundance estimates for the western North Atlantic short-finned pilot whale (Globicephala macrorhynchus) by month, year, and area covered during each abundance survey, and resulting abundance estimate (N_{est}) and coefficient of variation (CV). Estimates for the entire stock area (COMBINED) include pooled CVs. The estimate considered best is in bold font.

Month/Year	Area	Nest	CV
Jun–Aug 2016	New Jersey to lower Bay of Fundy	3,810	0.42
Jun–Aug 2016	Central Florida to New Jersey	25,114	0.27
Jun–Aug 2016	Central Florida to lower Bay of Fundy (COMBINED)	28,924	0.24
Jun-Aug 2021	New Jersey to lower Bay of Fundy	3,722	0.67
Jun–Aug 2021	Central Florida to New Jersey	15,004	0.38
Jun-Aug 2021	Central Florida to lower Bay of Fundy (COMBINED)	18,726	0.33

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for western North Atlantic short-finned pilot whale is 18,726 animals (CV=0.33). The minimum population estimate is 14,292 (Table 2).

Current Population Trend

There are four available coastwide abundance estimates for short-finned pilot whales from the summers of 2004, 2011, 2016, and 2021. Each of these is derived from vessel surveys with similar survey designs and all four used the two-team independent observer approach to estimate abundance. The southeast component of these surveys all were expected to contain exclusively short-finned pilot whales, and the logistic regression model was used to partition pilot whale sightings from the northeast portion of the survey between the short-finned and long-finned species based upon

habitat characteristics. The resulting estimates were 24,674 (CV=0.52) in 2004, 21,515 (CV=0.36) in 2011, 28,924 (CV=0.24) in 2016, and 18,749 (CV=0.33) in 2021 (Garrison and Palka 2018; Garrison and Dias 2023). A generalized linear model indicated no significant trend (p=0.697) in these abundance estimates. The key uncertainty is the assumption that the logistic regression model accurately represents the relative distribution of short-finned vs. long-finned pilot whales in each year.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for short-finned pilot whales is 14,292. The maximum productivity rate is 0.04, the default value for cetaceans. The "recovery" factor is 0.5 because the stock's status relative to optimum sustainable population (OSP) is unknown and the CV of the average mortality estimate is less than 0.3 (Wade and Angliss 1997). PBR for the western North Atlantic short-finned pilot whale is 143 (Table 2).

Table 2. Best and minimum abundance estimates for the western North Atlantic short-finned pilot whale with Maximum Productivity Rate (R_{max}), Recovery Factor (F_r) and PBR.

N _{est}	CV N _{est}	\mathbf{N}_{\min}	$\mathbf{F}_{\mathbf{r}}$	R _{max}	PBR
18,726	0.33	14,292	0.5	0.04	143

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

The estimated mean annual fishery-related mortality and serious injury during 2017–2021 due to the large pelagics longline commercial fishery was 218 short-finned pilot whales (CV=0.19; Table 3). Uncertainty in this estimate arises because it incorporates a logistic regression model to predict the species of origin (long-finned or short-finned pilot whale) for each bycaught whale. The statistical uncertainty in the assignment to species is incorporated into the abundance estimates; however, the analysis assumes that the collected biopsy samples adequately represent the distribution of the two species and that the resulting model correctly predicts shifts in distribution in response to changes in environmental conditions.

In bottom trawl, mid-water trawl, and gillnet fisheries, pilot whale mortalities were observed north of 40°N latitude in areas expected to have only long-finned pilot whales. Takes and bycatch estimates for these fisheries are therefore attributed to the long-finned pilot whale stock.

Fishery Information

There are three commercial fisheries that interact, or that potentially could interact, with this stock in the Atlantic Ocean. These include two Category I fisheries (the Atlantic Ocean, Caribbean, Gulf of Mexico large pelagics longline and the Atlantic Highly Migratory Species longline fisheries) and one Category III fishery (the Atlantic Ocean, Gulf of Mexico, Caribbean commercial passenger fishing vessel (hook and line) fishery). All recent gillnet and trawl interactions have been assigned to long-finned pilot whales using model-based predictions. Detailed fishery information is reported in Appendix III.

Earlier Interactions

See Appendix V for information on historical takes.

Pelagic Longline

The Atlantic Ocean, Caribbean, Gulf of Mexico large pelagics longline fishery operates in the U.S. Atlantic (including Caribbean) and Gulf of Mexico EEZ, and pelagic swordfish, tunas and billfish are the target species. The estimated annual average serious injury and mortality attributable to the Atlantic Ocean large pelagics longline fishery

for the five-year period from 2017 to 2021 was 218 short-finned pilot whales (CV=0.19; Table 3). During 2017–2021, 72 serious injuries were observed in the following fishing areas of the North Atlantic: Florida East Coast, Mid-Atlantic Bight, Northeast Coastal, and South Atlantic Bight. During 2017–2021, one mortality was observed (in 2021) in the Mid-Atlantic Bight fishing area (Garrison and Stokes 2020a; 2020b; 2021; 2023a; 2023b).

Prior to 2014, estimated bycatch in the pelagic longline fishery was assigned to the short-finned pilot whale stock because the observed interactions all occurred at times and locations where available data indicated that long-finned pilot whales were very unlikely to occur. Specifically, the highest bycatch rates of undifferentiated pilot whales were observed during September–November along the mid-Atlantic coast (south of 38°N; Garrison 2007), and biopsy data collected in this area during October–November 2011 indicated that only short-finned pilot whales occurred in this region (Garrison and Rosel 2017). Similarly, all genetic data collected from interactions in the pelagic longline fishery have indicated interactions with short-finned pilot whales. However, in recent years, pilot whale interactions (including serious injuries) were observed farther north and along the southern flank of Georges Bank. Therefore, the logistic regression model (described above in 'Spatial Distribution and Abundance Estimates for *Globicephala macrorhynchus*) was applied using contemporaneous sea surface temperature data to estimate the probability that these interactions were from short-finned vs. long-finned pilot whales (Garrison and Rosel 2017). Due to high water temperatures (ranging from 22 to 25°C) at the time of the observed takes, these interactions were estimated to have a >90% probability of coming from short-finned pilot whales. The estimated probability was used to apportion the estimated mortality and serious injury in the pelagic longline fishery between the short-finned and long-finned pilot whales. The estimated probability was used to apportion the estimated mortality and serious injury in the pelagic longline fishery between the short-finned and long-finned pilot whale stocks (Garrison and Stokes 2020a; 2020b; 2021; 2023a; 2023b).

Between 1992 and 2004, most of the marine mammal bycatch in the U.S. pelagic longline fishery was recorded in U.S. Atlantic EEZ waters between South Carolina and Cape Cod (Garrison 2007). From January to March, observed bycatch was concentrated on the continental shelf edge northeast of Cape Hatteras, North Carolina. During April– June, bycatch was recorded in this area as well as north of Hydrographer Canyon in water over 1,000 fathoms (1830m) deep. During the July–September period, observed takes occurred on the continental shelf edge east of Cape Charles, Virginia, and on Block Canyon slope in over 1,000 fathoms of water. October–December bycatch occurred between the 20- and 50-fathom (37- and 92-m) isobaths between Barnegat Bay, New Jersey, and Cape Hatteras, North Carolina.

The Atlantic Highly Migratory Species longline fishery operates outside the U.S. EEZ. No takes of short-finned pilot whales within high seas waters of the Atlantic Ocean have been observed or reported thus far.

See Table 3 for bycatch estimates and observed mortality and serious injury for the current five-year period, and Appendix V for historical estimates of annual mortality and serious injury.

Table 3. Summary of the incidental mortality and serious injury of short-finned pilot whales (Globicephala macrorhynchus) by the U.S. commercial large pelagics longline fishery including the years sampled (Years), the number of vessels active within the fishery (Vessels), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the annual observed mortality and serious injury usingon-board observer data, the annual estimated mortality and serious injury, the combined annual estimates of mortality and serious injury (Estimated Combined Mortality), the estimated CV of the combined annual mortality estimates (Est. CVs) and the mean of the combined mortality estimates (CV in parentheses).

Fishery	Years	Vessels ^a	Data Type ^b	Observer Coverage ^c	Observed Serious Injury	Observed Mortality	Estimated Serious Injury	Estimated Mortality	Estimated Combined Mortality	Est. CVs	Mean Annual Mortality
Pelagic Longline	2017 2018 2019 2020 2021	65 57 50 50 49	Obs. Data, Logbook	11 10 10 9 8	14 7 10 22 19	0 0 0 1	133 102 131 371 332	0 0 0 23	133 102 131 371 355	0.29 0.39 0.37 0.45 0.31	218 (0.19)

a. Number of vessels in the fishery within the Atlantic is based on vessels reporting effort to the pelagic longline logbook.

b. Observer data (Obs. Data) are used to measure by catch rates and the data are collected within the Northeast Fisheries Observer Program (NEFOP) and the Southeast Pelagic Longline Observer Program.

c. Percentage of sets observed in the Atlantic

Hook and Line (Rod and Reel)

During 2017–2021, there were no documented takes by this fishery. The most recent take occurred in 2013. It is not possible to estimate the total number of interactions with hook and line gear because there is no systematic observer program.

STATUS OF STOCK

The short-finned pilot whale is not listed as threatened or endangered under the Endangered Species Act, but the western North Atlantic stock is a strategic stock under the MMPA because the mean annual human-caused mortality and serious injury exceeds PBR. Total U.S. fishery-related mortality and serious injury attributed to short-finned pilot whales exceeds the calculated PBR and therefore cannot be considered to be insignificant and approaching zero mortality and serious injury rate. The status of this stock relative to optimum sustainable population is unknown. There is no evidence for a trend in population size for this stock.

OTHER FACTORS THAT MAY BE AFFECTING THE STOCK

Strandings

During 2017–2021, 65 short-finned pilot whales were reported stranded along the U.S. East Coast between Massachusetts and Florida (Table 4; NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 13 October 2022 (Southeast Region [SER]) and 18 September 2022 (Northeast Region [NER])). These strandings included two mass stranding events of live animals in 2019. Evidence of human interaction was detected for two animals (one animal pushed out to sea by the public and one with ingested plastic debris; neither interaction was believed to be the cause of the stranding). No evidence of human interaction was detected for 13 strandings, and for the remaining 50 strandings, it could not be determined if there was evidence of human interaction. It should be noted that evidence of human interaction does not necessarily mean the interaction caused the animal's stranding or death.

Table 4. Short-finned pilot whale (Globicephala macrorhynchus) strandings along the Atlantic coast, 2017–2021.
Data are from the NOAA National Marine Mammal Health and Stranding Response Database unpublished data,
accessed 13 October 2022 (SER) and 18 September 2022 (NER). EEZ=U.S. Exclusive Economic Zone (offshore
U.S. waters).

State	2017	2018	2019	2020	2021	TOTALS
Massachusetts	0	0	3 ^a	0	0	3
New York	0	4	0	0	0	4
Maryland	0	0	1	0	0	1
Virginia	0	0	1	2	0	3
North Carolina	1	2	2	0	2	7
South Carolina	0	0	5	0	0	5
Georgia	1	0	40 ^b	0	0	41
Florida	0	1	0	0	0	1
TOTALS	2	7	52	2	2	65

a. These 3 animals were a live mass stranding event.

b. There were two mass strandings of short-finned pilot whales in 2019 off Georgia encompassing 39 of the 40 reported strandings. One mass stranding occurred in July, and these 21 animals were part of a mass stranding event of ~50 live whales; the second occurred in September, and these 18 whales were part of a mass stranding event of ~28 live and dead whales.

There are a number of difficulties associated with the interpretation of stranding data. Stranding data underestimate the extent of human and fishery-related mortality and serious injury, particularly for offshore species such as pilot whales, because not all of the whales that die or are seriously injured in human interactions wash ashore, or, if they do, they are not all recovered (Peltier et al. 2012; Wells et al. 2015; Carretta et al. 2016). In particular, shelf and slope stocks in the western North Atlantic are less likely to strand than nearshore coastal stocks. Additionally, not all carcasses will show evidence of human interaction, entanglement or other fishery-related interaction due to decomposition, scavenger damage, etc. (Byrd et al. 2014). Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of human interaction.

Habitat Issues

The chronic impacts of contaminants (polychlorinated biphenyls [PCBs] and chlorinated pesticides [DDT, DDE,

dieldrin, etc.]) on marine mammal reproduction and health are of concern (e.g., Schwacke et al. 2002; Jepson et al. 2016; Hall et al. 2018). Moderate levels of these contaminants have been found in pilot whale blubber (Taruski et al. 1975; Muir et al. 1988; Weisbrod et al. 2000). Weisbrod et al. (2000) examined polychlorinated biphenyl and chlorinated pesticide concentrations in bycaught and stranded pilot whales in the western North Atlantic. Contaminant levels were similar to or lower than levels found in other toothed whales in the western North Atlantic, perhaps because they are feeding further offshore than other species (Weisbrod et al. 2000). Dam and Bloch (2000) found very high PCB levels in long-finned pilot whales in the Faroes. Also, high levels of toxic metals (mercury, lead, cadmium) and selenium were measured in pilot whales harvested in the Faroe Island drive fishery (Nielsen et al. 2000). However, the population effect of the observed levels of such contaminants on this stock is unknown.

Anthropogenic sound in the world's oceans has been shown to affect marine mammals, with vessel traffic, seismic surveys, and active naval sonars being the main anthropogenic contributors to low- and mid-frequency noise in oceanic waters (e.g., Nowacek et al. 2015; Gomez et al. 2016; NMFS 2018). The long-term and population consequences of these impacts are less well-documented and likely vary by species and other factors. Impacts on marine mammal prey from sound are also possible (Carroll et al. 2017), but the duration and severity of any such prey effects on marine mammals are unknown.

Climate-related changes in spatial distribution and abundance, including poleward and depth shifts, have been documented in or predicted for plankton species and commercially important fish stocks (Nye et al. 2009; Pinsky et al. 2013; Poloczanska et al. 2013; Grieve et al. 2017; Morley et al. 2018) and cetacean species (e.g., MacLeod 2009; Sousa et al. 2019). Chavez-Rosales et al. (2022) documented an overall 178 km northeastward spatial distribution shift of the seasonal core habitat of Northwest Atlantic cetaceans that was related to changing habitat/climatic factors. Results varied by season and species. This study used sightings data collected during seasonal aerial and shipboard line transect abundance surveys during 2010 to 2017. During this time frame, the weighted centroid of the short-finned pilot whale core habitat moved towards the northeast in fall and winter (296 and 218 km, respectively) and towards the southwest in spring and summer (120 and 149 km, respectively). There is uncertainty in how, if at all, the changes in distribution and population size of cetacean species may interact with changes in distribution of prey species and how the ecological shifts will affect human impacts to the species.

REFERENCES CITED

- Barlow, J., S.L. Swartz, T.C. Eagle and P.R. Wade. 1995. U.S. marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. NOAA Tech. Memo. NMFS-OPR-6. 73pp. https://repository.library.noaa.gov/view/noaa/6219
- Bernard, H. J. and S.B. Reilly. 1999. Pilot whales *Globicephala* Lesson, 1828. Pages 245–279 *In*: S. H. Ridgway and R. Harrison (eds). Handbook of marine mammals, Vol. 6: The second book of dolphins and the porpoises. Academic Press, San Diego, CA.
- Byrd, B.L., A.A. Hohn, G.N. Lovewell, K.M. Altman, S.G. Barco, A. Friedlaender, C.A. Harms, W.A. McLellan, K.T. Moore, P.E. Rosel and V.G. Thayer. 2014. Strandings illustrate marine mammal biodiversity and human impacts off the coast of North Carolina, USA. Fish. Bull. 112:1–23.
- Carretta, J.V., K. Danil, S.J. Chivers, D.W. Weller, D.S. Janiger, M. Berman-Kowalewski, K.M. Hernandez, J.T. Harvey, R.C. Dunkin, D.R. Casper, S. Stoudt, M. Flannery, K. Wilkinson, J. Huggins and D.M. Lambourn. 2016. Recovery rates of bottlenose dolphin (*Tursiops truncatus*) carcasses estimated from stranding and survival rate data. Mar. Mamm. Sci. 32(1):349–362.
- Carroll, A.G., R. Przeslawski, A. Duncan, M. Gunning and B. Bruce. 2017. A critical review of the potential impacts of marine seismic surveys on fish & invertebrates. Mar. Pollut. Bull. 114:9–24.
- Chavez-Rosales S., E. Josephson, D. Palka and L. Garrison. 2022. Detection of habitat shifts of cetacean species: a comparison between 2010 and 2017 habitat suitability conditions in the northwest Atlantic Ocean. Front. Mar. Sci. 9:877580.
- Dam, M. and D. Bloch. 2000. Screening of mercury and persistent organochlorine pollutants in long-finned pilot whale (*Globicephala melas*) in the Faroe Islands. Mar. Poll. Bull. 40(12):1090–1099.
- Dunn, C. 2013. Bahamas Marine Mammal Research Organisation Opportunistic Sightings. Data downloaded from OBIS-SEAMAP (http://seamap.env.duke.edu/dataset/329) on 2023-09-05.
- Garrison, L.P. 2007. Interactions between marine mammals and longline fishing gear in the U.S. Atlantic Ocean between 1992 and 2004. Fish. Bull. 105(3):408–417.
- Garrison, L.P. 2016. Abundance of marine mammals in waters of the U.S. East Coast during summer 2011. Southeast Fisheries Science Center, Protected Resources and Biodiversity Division, 75 Virginia Beach Dr., Miami, FL 33140. PRBD Contribution # PRBD-2016-08. 21pp.

- Garrison, L.P. and L.A. Dias. 2023. Abundance of marine mammals in waters of the southeastern U.S. Atlantic during summer 2021. SEFSC MMTD Contribution: #MMTD-2023-01. 23 pp. https://repository.library.noaa.gov/view/noaa/49152
- Garrison, L.P. and D. Palka. 2018. Abundance of short-finned pilot whales along the U.S. east coast from summer 2016 vessel surveys. Southeast Fisheries Science Center, Protected Resources and Biodiversity Division, 75 Virginia Beach Dr., Miami, FL 33140. PRBD Contribution # PRBD-2018-07. 17pp.
- Garrison, L.P. and P.E. Rosel. 2017. Partitioning short-finned and long-finned pilot whale bycatch estimates using habitat and genetic information. Southeast Fisheries Science Center, Protected Resources and Biodiversity Division, 75 Virginia Beach Dr., Miami, FL 33140. PRBD Contribution # PRBD-2016-17. 24pp.
- Garrison, L.P. and L. Stokes. 2020a. Estimated bycatch of marine mammals and sea turtles in the U.S. Atlantic pelagic longline fleet during 2017. Southeast Fisheries Science Center, Protected Resources and Biodiversity Division, 75 Virginia Beach Dr., Miami, Florida 33140. PRD Contribution # PRD-2020-05. 61pp.
- Garrison, L.P. and L. Stokes. 2020b. Estimated bycatch of marine mammals and sea turtles in the U.S. Atlantic pelagic longline fleet during 2018. Southeast Fisheries Science Center, Protected Resources and Biodiversity Division, 75 Virginia Beach Dr., Miami, Florida 33140. PRD Contribution # PRD-2020-08. 56pp.
- Garrison, L.P. and L. Stokes. 2021. Estimated bycatch of marine mammals and sea turtles in the U.S. Atlantic pelagic longline fleet during 2019. NOAA Tech. Memo. NMFS-SEFSC-750. 59pp.
- Garrison, L.P. and L. Stokes. 2023a. Estimated bycatch of marine mammals and sea turtles in the U.S. Atlantic pelagic longline fleet during 2020. NOAA Tech. Memo. NMFS-SEFSC-764. 66 pp.
- Garrison, L.P. and L. Stokes. 2023b. Estimated bycatch of marine mammals and sea turtles in the U.S. Atlantic pelagic longline fleet during 2021. NOAA Tech. Memo. NMFS-SEFSC-765. 65 pp.
- Gomez, C., J.W. Lawson, A.J. Wright, A.D. Buren, D. Tollit and V. Lesage. 2016. A systematic review on the behavioural responses of wild marine mammals to noise: The disparity between science and policy. Can. J. Zool. 94:801–819.
- Grieve, B.D., J.A. Hare and V.S. Saba. 2017. Projecting the effects of climate change on *Calanus finmarchicus* distribution within the US Northeast continental shelf. Sci. Rep. 7:6264.
- Hall, A.J., B.J. McConnell, L.J. Schwacke, G.M. Ylitalo, R. Williams and T.K. Rowles. 2018. Predicting the effects of polychlorinated biphenyls on cetacean populations through impacts on immunity and calf survival. Environ. Pollut. 233:407–418.
- Halpin, P.N., A.J. Read, E. Fujioka, B.D. Best, B. Donnelly, L.J. Hazen, C. Kot, K. Urian, E. LaBrecque, A. Dimatteo, J. Cleary, C. Good, L.B. Crowder and K.D. Hyrenbach. 2009. OBIS-SEAMAP: The world data center for marine mammal, sea bird, and sea turtle distributions. Oceanography 22(2):104–115. https://doi.org/10.5670/oceanog.2009.42.
- Irvine, A.B., M.D. Scott, R.S. Wells, J.G. Mead. 1979. Stranding of the pilot whale, *Globicephala macrorhynchus*, in Florida and South Carolina. Fish. Bull. 77:511–513.
- Jepson, P.D., R. Deaville, J.L. Barber, A. Aguilar, A. Borrell, S. Murphy, J. Barry, A. Brownlow, J. Barnett, S. Berrow and A.A. Cunningham. 2016. PCB pollution continues to impact populations of orcas and other dolphins in European waters. Sci. Rep.-U.K. 6:18573.
- Laake, J.L. and D.L. Borchers. 2004. Methods for incomplete detection at distance zero. Pages 108–189 in: S.T. Buckland, D.R. Andersen, K.P. Burnham, J.L. Laake, and L. Thomas (eds). Advanced distance sampling. Oxford University Press, New York.
- MacLeod, C.D. 2009. Global climate change, range changes and potential implications for the conservation of marine cetaceans: A review and synthesis. Endang. Species Res. 7:125–136.
- Maze-Foley, K. and K.D. Mullin. 2006. Cetaceans of the oceanic northern Gulf of Mexico: Distributions, group sizes and interspecific associations. J. Cetacean Res. Manage. 8(2):203–213.
- Morley, J.W., R.L. Selden, R.J. Latour, T.L. Frolicher, R.J. Seagraves and M.L. Pinsky. 2018. Projecting shifts in thermal habitat for 686 species on the North American continental shelf. PLoS ONE 13(5):e0196127.
- Muir, D.C.G., R. Wagemann, N.P. Grift, R.J. Norstrom, M. Simon and J. Lien. 1988. Organochlorine chemical and heavy metal contaminants in white-beaked dolphins (*Lagenorhynchus albirostris*) and pilot whales (*Globicephala melaena*) from the coast of Newfoundland, Canada. Arch. Environ. Contam. Toxicol. 17(5): 613–629.
- Mullin, K.D. and G.L. Fulling. 2003. Abundance of cetaceans in the southern U.S. North Atlantic Ocean during summer 1998. Fish. Bull. 101(3):603–613.
- Mullin, K.D. and G.L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico, 1996–2001. Mar. Mamm. Sci. 20(4):787–807.
- NEFSC [Northeast Fisheries Science Center] and Southeast Fisheries Science Center [SEFSC]. 2022. 2021 Annual report of a comprehensive assessment of marine mammal, marine turtle, and seabird abundance and spatial

distribution in US waters of the Western North Atlantic Ocean – AMAPPS III. 125 pp. https://repository.library.noaa.gov/view/noaa/41734

- Nielsen, J.B., F. Nielsen, P.-J. Jorgensen and P. Grandjean. 2000. Toxic metals and selenium in blood from pilot whales (*Globicephala melas*) and sperm whales (*Physeter catodon*). Mar. Poll. Bull. 40(4):348–35.
- NMFS [National Marine Fisheries Service]. 1993. Status of fishery resources off the northeastern United States for 1993. NOAA Tech. Memo. NMFS-F/NEC-101. 140pp. http://www.nefsc.noaa.gov/publications/tm/pdfs/tmfnec101.pdf
- NMFS [National Marine Fisheries Service]. 2018. 2018 Revisions to: Technical guidance for assessing the effects of anthropogenic sound on marine mammal hearing (Version 2.0): Underwater thresholds for onset of permanent and temporary threshold shifts. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-OPR-59. 167pp. https://repository.library.noaa.gov/view/noaa/17892
- Northeast Fisheries Science Center (NEFSC) and Southeast Fisheries Science Center (SEFSC). 2022. 2021 Annual report of a comprehensive assessment of marine mammal, marine turtle, and seabird abundance and spatial distribution in US waters of the Western North Atlantic Ocean AMAPPS III. 125 pp. https://repository.library.noaa.gov/view/noaa/41734
- Northeast Fisheries Science Center (NEFSC) and Southeast Fisheries Science Center (SEFSC). 2016. 2016 Annual report of a comprehensive assessment of marine mammal, marine turtle, and seabird abundance and spatial distribution in US Waters of the Western North Atlantic Ocean AMAPPS II. U.S. Dept. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 18-04. 141 pp. https://www.fisheries.noaa.gov/resource/publication-database/atlantic-marine-assessment-program-protected-species.
- Nowacek, D.P., C.W. Clark, D. Mann, P.J.O. Miller, H.C. Rosenbaum, J.S. Golden, M. Jasny, J. Kraska and B.L. Southall. 2015. Marine seismic surveys and ocean noise: time for coordinated and prudent planning. Front. Ecol. Environ. 13:378–386.
- Nye, J., J. Link, J. Hare and W. Overholtz. 2009. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar. Ecol. Prog. Ser. 393:111–129.
- Palka, D. 2012. Cetacean abundance estimates in US northwestern Atlantic Ocean waters from summer 2011 line transect survey. U.S. Dept. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 12-29. 37pp.
- http://www.nefsc.noaa.gov/nefsc/publications/
- Palka, D. 2023. Cetacean abundance in the U.S. Northwestern Atlantic Ocean, summer 2021. US Dept Commer Northeast Fish Sci Cent Ref Doc 23-08. 59 p.
- Payne, P.M. and D.W. Heinemann. 1993. The distribution of pilot whales (*Globicephala* sp.) in shelf/shelf edge and slope waters of the northeastern United States, 1978–1988. Rep. Int. Whal. Comm. (Special Issue) 14:51– 68.
- Peltier, H., W. Dabin, P. Daniel, O. Van Canneyt, G. Dorémus, M. Huon and V. Ridoux. 2012. The significance of stranding data as indicators of cetacean populations at sea: Modelling the drift of cetacean carcasses. Ecol. Indic. 18:278–290.
- Pinsky, M.L., B. Worm, M.J. Fogarty, J.L. Sarmiento and S.A. Levin. 2013. Marine taxa track local climate velocities, Science 341:1239–1242.
- Poloczanska, E.S., C.J. Brown, W.J. Sydeman, W. Kiessling, D.S. Schoeman, P.J. Moore, K. Brander, J.F. Bruno, L.B. Buckley, M.T. Burrows, C.M. Duarte, B.S. Halpern, J. Holding, C.V. Kappel, M.I. O'Connor, J.M. Pandolfi, C. Parmesan, F. Schwing, S.A. Thompson and A.J. Richardson. 2013. Global imprint of climate change on marine life. Nat. Clim. Change 3:919–925.
- Pugliares, K.R., T.W. French, G.S. Jones, M.E. Niemeyer, L.A. Wilcox and B.J. Freeman. 2016. First records of the short-finned pilot whale (*Globicephala macrorhynchus*) in Massachusetts, USA: 1980 and 2011. Aquat. Mamm. 42(3):357–362.
- Rone, B.K. and R.M. Pace, III. 2012. A simple photograph-based approach for discriminating between free-ranging long-finned (*Globicephala melas*) and short-finned (*G. macrorhynchus*) pilot whales off the east coast of the United States. Mar. Mamm. Sci. 28(2):254–275.
- Schwacke, L.H., E.O. Voit, L.J. Hansen, R.S. Wells, G.B. Mitchum, A.A. Hohn and P.A. Fair. 2002. Probabilistic risk assessment of reproductive effects of polychlorinated biphenyls on bottlenose dolphins (*Tursiops truncatus*) from the southeast United States coast. Env. Toxic. Chem. 21(12):2752–2764.
- Sousa, A., F. Alves, A. Dinis, J. Bentz, M.J. Cruz and J.P. Nunes. 2019. How vulnerable are cetaceans to climate change? Developing and testing a new index. Ecol. Indic. 98:9–18.
- Taruski, A.G., C.E. Olney and H.E. Winn. 1975. Chlorinated hydrocarbons in cetaceans. J. Fish. Res. Board Can. 32(11):2205–2209.

- Thorne, L.H., H.J. Foley, R.W. Baird, D.L. Webster, Z.T. Swaim and A.J. Read. 2017. Movement and foraging behavior of short-finned pilot whales in the Mid-Atlantic Bight: Importance of bathymetric features and implications for management. Mar. Ecol. Prog. Ser. 584:245–257.
- Wade, P.R. and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3–5, 1996, Seattle, Washington. NOAA Tech. Memo. NMFS-OPR-12. 93pp. https://repository.library.noaa.gov/view/noaa/15963
- Weisbrod, A.V., D. Shea, M.J. Moore and J.J. Stegeman. 2000. Bioaccumulation patterns of polychlorinated biphenyls and chlorinated pesticides in northwest Atlantic pilot whales. Environ. Toxicol. Chem. 19(3):667–677.
- Wells, R.S., J.B. Allen, G. Lovewell, J. Gorzelany, R.E. Delynn, D.A. Fauquier and N.B. Barros. 2015. Carcassrecovery rates for resident bottlenose dolphins in Sarasota Bay, Florida. Mar. Mamm. Sci. 31(1):355–368.
- Wells, R.S., E. M. Fougeres, A.G. Cooper, R.O. Stevens, M. Brodsky, R. Lingenfelser, C. Dodd and D.C. Douglas. 2013. Movements and dive patterns of short-finned pilot whales (*Globicephala macrorhynchus*) released from a mass stranding in the Florida Keys. Aquat. Mamm. 39(1):61–72.