Data Management Plan
GUID: gov.noaa.nmfs.inport:49961 | Published / External
Data Management Plan
DMP Template v2.0.1 (2015-01-01)
Please provide the following information, and submit to the NOAA DM Plan Repository.Reference to Master DM Plan (if applicable)
As stated in Section IV, Requirement 1.3, DM Plans may be hierarchical. If this DM Plan inherits provisions from a higher-level DM Plan already submitted to the Repository, then this more-specific Plan only needs to provide information that differs from what was provided in the Master DM Plan.
1. General Description of Data to be Managed
The project area is composed of 16 counties in the State of South Carolina - Cherokee, Union, Laurens,
Greenwood, Newberry, Chester, Fairfield, Lancaster, Chesterfield, Marlboro, Darlington, Dillon, Marion,
Williamsburg, Clarendon, and Orangeburg. This metadata file is for the lidar county deliverables for Cherokee County, SC.
The project area consists of approximately 10,194 square miles including a buffer of 50 feet along the edges of the
project area and an additional buffer in some areas. The project design of the lidar data acquisition was developed
to support a nominal post spacing of 1.4 meters. The Fugro EarthData, Inc. acquisition team of Fugro Horizons, Inc.
and North West Group acquired 721 flight lines in 44 lifts from January 15, 2008 through February 10, 2008. The data
was divided into 5000' by 5000' foot cells that serve as the tiling scheme. Lidar data collection was performed with a
Cessna 310 aircraft, utilizing a Leica ALS50-II MPiA sensor, collecting multiple return x, y, and z data as well as
intensity data. Lidar data was processed to achieve a bare ground surface (Classes 2 and 8). Lidar data is remotely
sensed high-resolution elevation data collected by an airborne collection platform. Using a combination of laser range
finding, GPS positioning and inertial measurement technologies, lidar instruments are able to make highly detailed
Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation.
Notes: Only a maximum of 4000 characters will be included.
Notes: Data collection is considered ongoing if a time frame of type "Continuous" exists.
Notes: All time frames from all extent groups are included.
Notes: All geographic areas from all extent groups are included.
(e.g., digital numeric data, imagery, photographs, video, audio, database, tabular data, etc.)
(e.g., satellite, airplane, unmanned aerial system, radar, weather station, moored buoy, research vessel, autonomous underwater vehicle, animal tagging, manual surveys, enforcement activities, numerical model, etc.)
2. Point of Contact for this Data Management Plan (author or maintainer)
Notes: The name of the Person of the most recent Support Role of type "Metadata Contact" is used. The support role must be in effect.
Notes: The name of the Organization of the most recent Support Role of type "Metadata Contact" is used. This field is required if applicable.
3. Responsible Party for Data Management
Program Managers, or their designee, shall be responsible for assuring the proper management of the data produced by their Program. Please indicate the responsible party below.
Notes: The name of the Person of the most recent Support Role of type "Data Steward" is used. The support role must be in effect.
4. Resources
Programs must identify resources within their own budget for managing the data they produce.
5. Data Lineage and Quality
NOAA has issued Information Quality Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity of information which it disseminates.
(describe or provide URL of description):
Process Steps:
- 2008-06-17 00:00:00 - 1. Lidar, GPS, and IMU data was processed together using lidar processing software. 2. The lidar data set for each flight line was checked for project area coverage and lidar post spacing was checked to ensure it meets project specifications. 3. The lidar collected at the calibration area and project area were used to correct the rotational, atmospheric, and vertical elevation differences that are inherent to lidar data. 4. Intensity rasters were generated to verify that intensity was recorded for each lidar point. 5. Lidar data was transformed to the specified project coordinate system. 6. By utilizing the ground survey data collected at the calibration site and project area, the lidar data was vertically biased to the ground. 7. Comparisons between the biased lidar data and ground survey data within the project area were evaluated and a final RMSE value was generated to ensure the data meets project specifications. 8. Lidar data in overlap areas of project flight lines were trimmed and data from all swaths were merged into a single data set. 9. The data set was trimmed to the digital project boundary including an additional buffer zone of 50 feet (buffer zone assures adequate contour generation from the DEM). 10.The resulting data set is referred to as the raw lidar data.
- 2008-11-10 00:00:00 - 1. The raw lidar data was processed through a minimum block mean algorithm, and points were classified as either bare earth or non-bare earth. 2. User developed "macros" that factor mean terrain angle and height from the ground were used to determine bare earth point classification. 3. The next phase of the surfacing process was a 2D edit procedure that ensures the accuracy of the automated feature classification. 4. Editors used a combination of imagery, intensity of the lidar reflection, profiles, and tin-editing software to assess points. 5. The lidar data was filtered, as necessary, using a quadric error metric to remove redundant points. This method leaves points where there is a change in the slope of surfaces (road ditches) and eliminates points from evenly sloped terrain (flat field) where the points do not affect the surface. 6. The algorithms for filtering data were utilized within Fugro EarthData's proprietary software and commercial software written by TerraSolid. 7. The flight line overlap points were merged back into filtered data set for delivery product. 8. The point cloud data were delivered tiled in LAS 1.1 format; class 12 - flight line overlap points, class 9 - points in water, class 8 - model-key points, class 2 - ground points, and class 1 - all other.
- 2008-11-21 00:00:00 - Lidar intensity images were generated in TerraSolid software. The images are then brought up in Photoshop to see if a curve is needed to modify the radiometrics and to ensure they match from group to group. Along with looking for missing coverage and clipping to the boundary, the following steps are run in Photoshop: 1. Flip 0 values to 1 2. Change 3-band images to 1 band 3. Restore GeoTIFF headers. The intensity images were delivered in GeoTIFF format.
- 2008-11-23 00:00:00 - Tiled lidar LAS datasets are imported into a single multipoint geodatabase featureclass. Only Ground and Model-Keypoint are imported. An ArcGIS geodatabase terrain feature class is created using the terrain creation dialogue provided through ArcCatalog. The multipoint featureclass is imported as mass point features in the terrain. An overall tile boundary for the county is input as a soft clip feature for the terrain. The terrain pyramid level resolutions and scales are automatically calculated based on the point coverage for the county.
- 2009-09-01 00:00:00 - The NOAA Office for Coastal Management (OCM) received files in LAS format. The files contained LiDAR intensity and elevation measurements. OCM performed the following processing on the data to make it available within Digital Coast: 1. The data were converted from State Plane, SPCS Zone 3900 coordinates to geographic coordinates. 2. The data were converted from NAVD88 heights to ellipsoid heights using Geoid03. 3. The LAS header fields were sorted by latitude and updated.
(describe or provide URL of description):
6. Data Documentation
The EDMC Data Documentation Procedural Directive requires that NOAA data be well documented, specifies the use of ISO 19115 and related standards for documentation of new data, and provides links to resources and tools for metadata creation and validation.
Missing/invalid information:
- 1.6. Type(s) of data
- 1.7. Data collection method(s)
- 3.1. Responsible Party for Data Management
- 4.1. Have resources for management of these data been identified?
- 4.2. Approximate percentage of the budget for these data devoted to data management
- 5.2. Quality control procedures employed
- 7.1. Do these data comply with the Data Access directive?
- 7.1.1. If data are not available or has limitations, has a Waiver been filed?
- 7.1.2. If there are limitations to data access, describe how data are protected
- 7.4. Approximate delay between data collection and dissemination
- 8.1. Actual or planned long-term data archive location
- 8.3. Approximate delay between data collection and submission to an archive facility
- 8.4. How will the data be protected from accidental or malicious modification or deletion prior to receipt by the archive?
(describe or provide URL of description):
7. Data Access
NAO 212-15 states that access to environmental data may only be restricted when distribution is explicitly limited by law, regulation, policy (such as those applicable to personally identifiable information or protected critical infrastructure information or proprietary trade information) or by security requirements. The EDMC Data Access Procedural Directive contains specific guidance, recommends the use of open-standard, interoperable, non-proprietary web services, provides information about resources and tools to enable data access, and includes a Waiver to be submitted to justify any approach other than full, unrestricted public access.
None
Notes: The name of the Organization of the most recent Support Role of type "Distributor" is used. The support role must be in effect. This information is not required if an approved access waiver exists for this data.
Notes: This field is required if a Distributor has not been specified.
https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/510/index.html
Notes: All URLs listed in the Distribution Info section will be included. This field is required if applicable.
This data can be obtained on-line at the following URL: https://coast.noaa.gov/dataviewer
The data set is dynamically generated based on user-specified parameters.
;
Notes: This field is required if applicable.
8. Data Preservation and Protection
The NOAA Procedure for Scientific Records Appraisal and Archive Approval describes how to identify, appraise and decide what scientific records are to be preserved in a NOAA archive.
(Specify NCEI-MD, NCEI-CO, NCEI-NC, NCEI-MS, World Data Center (WDC) facility, Other, To Be Determined, Unable to Archive, or No Archiving Intended)
Notes: This field is required if archive location is World Data Center or Other.
Notes: This field is required if archive location is To Be Determined, Unable to Archive, or No Archiving Intended.
Notes: Physical Location Organization, City and State are required, or a Location Description is required.
Discuss data back-up, disaster recovery/contingency planning, and off-site data storage relevant to the data collection
9. Additional Line Office or Staff Office Questions
Line and Staff Offices may extend this template by inserting additional questions in this section.